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Abstract

This paper presents a computational theory on the roles of the ascending neuromodulatory systems from the viewpoint that they mediate

the global signals that regulate the distributed learning mechanisms in the brain. Based on the review of experimental data and theoretical

models, it is proposed that dopamine signals the error in reward prediction, serotonin controls the time scale of reward prediction,

noradrenaline controls the randomness in action selection, and acetylcholine controls the speed of memory update. The possible interactions

between those neuromodulators and the environment are predicted on the basis of computational theory of metalearning. q 2002 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Some of the neurotransmitters that have spatially dis-

tributed, temporally extended effects on the recipient neurons

and circuits are called Neuromodulators (Katz, 1999; Marder

& Thirumalai, 2002; Saper, 2000). The best known examples

of neuromodulators are dopamine (DA), serotonin (5-HT),

noradrenaline (NA; also called norepinephrine, NE), and

acetylcholine (ACh). Neuromodulators are traditionally

assumed to be involved in the control of general arousal

(Robbins, 1997; Saper, 2000). Recent advances in molecular

biological techniques have provided rich data on the spatial

localization and physiological effects of different neuromodu-

lators and their receptors. This prompted us to build a more

specific yet still comprehensive theory for the functions of

neuromodulators. This paper proposes a computational theory

on the roles of the earlier four major neuromodulators from the

viewpoint that neuromodulators are media for signaling

specific global variables and parameters that regulate

distributed learning modules in the brain (Doya, 2000b).

The computational theory for acquisition of goal-

directed behaviors has been formulated under the name of

reinforcement learning (RL) (Barto, 1995b; Doya, 2000c;

Doya, Kimura, & Kawato, 2001; Sutton & Barto, 1998).

The theory has been successfully applied to a variety of

dynamic optimization problems, such as game programs

(Tesauro, 1994), robotic control (Morimoto & Doya, 2001),

and resource allocation (Singh & Bertsekas, 1997). In

practical applications of reinforcement learning theory, a

critical issue is how to set the parameters of the learning

algorithms, such as the speed of learning, the size of noise

for exploration, and the time scale in prediction of future

reward. Such parameters globally affect the way many

system parameters change by learning, so they are called

metaparameters or hyperparameters.

In statistical learning theory, the need for setting the right

metaparameters, such as the degree of freedom of statistical

models and the prior distribution of parameters, is widely

recognized. Theories of metaparameter setting have been

developed from the viewpoints of risk-minimization

(Vapnik, 2000) and Bayesian estimation (Neal, 1996).

However, many applications of reinforcement learning have

depended on heuristic search for setting the right metapara-

meters by human experts. The need for the tuning of

metaparameters is one of the major reasons why sophisti-

cated learning algorithms, which perform successfully in the

laboratory, cannot be practically applied in highly variable

environments at home or on the street.

Compared to current artificial learning systems, the

learning mechanisms implemented in the brain appear to be

much more robust and flexible. Humans and animals can

learn novel behaviors under a wide variety of environments.

This suggests that the brain has a certain mechanism for

metalearning, a capability of dynamically adjusting its own

metaparameters of learning. This paper presents a
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hypothesis stating that the ascending neuromodulatory

systems (Fig. 1) are the media of metalearning for

controlling and coordinating the distributed learning

modules in the brain (Doya, 1999). More specifically, we

propose the following set of hypotheses to explain the roles

of the four major ascending neuromodulators (Doya,

2000b):

1. Dopamine represents the global learning signal for

prediction of rewards and reinforcement of actions.

2. Serotonin controls the balance between short-term and

long-term prediction of reward.

3. Noradrenaline controls the balance between wide

exploration and focused execution.

4. Acetylcholine controls the balance between memory

storage and renewal.

In order to state the above hypotheses in a more

computationally well-defined manner, we first review the

basic algorithms of reinforcement learning and the roles of

major metaparameters. We then propose a set of hypotheses on

how such metaparameters are regulated by the above

neuromodulators. Finally, we discuss the possible neural

mechanisms of metaparameter control and the possible

interactions between neuromodulatory systems predicted

from the hypotheses.

In this paper, our main focus is on the roles of

neuromodulators within the circuit of basal ganglia, which

have been suggested as the major locus of reinforcement

learning (Doya, 2000a; Houk, Adams, & Barto, 1995;

Montague, Dayan, & Sejnowski, 1996). However, we also

discuss how their roles can be generalized to other brain areas,

including the cerebral cortex and the cerebellum.

2. Reinforcement learning algorithm

Reinforcement learning is a computational framework

Fig. 1. Major neuromodulator systems that project diffusely to the cortex, the basal ganglia, and the cerebellum from brain stem nuclei. The dopaminergic

system is shown in red, the serotonergic system in green, the noradrenergic system in blue, and the cholinergic system in magenta. The table shows the origins

and targets of projections their abbreviations.
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for an agent to learn to take an action in response to the state

of the environment so that the acquired reward is

maximized in a long run (Fig. 2) (Barto, 1995b; Doya,

2000c; Doya et al., 2001; Sutton & Barto, 1998). What

makes reinforcement learning difficult yet interesting is that

selection of an action does not only affect the immediate

reward but also affect the future rewards through the

dynamic evolution of the future states.

In order to outline a basic algorithm of reinforcement

learning, here we consider a Markov decision problem

(MDP), which assumes a discrete state, action, and time.

The agent observes the state sðtÞ [ {s1;…; sn} and takes an

action aðtÞ [ {a1;…; am} according to its policy, which is

given either deterministically as a ¼ GðsÞ or stochastically

as PðalsÞ: In response to the agent’s action aðtÞ; the state of

the environment changes either deterministically as sðt þ

1Þ ¼ FðsðtÞ; aðtÞÞ or stochastically according to a Markov

transition matrix Pðsðt þ 1ÞlsðtÞ; aðtÞÞ for each action aðtÞ:
The reward rðt þ 1Þ [ R is given deterministically as rðt þ

1Þ ¼ RðsðtÞ; aðtÞÞ; or stochastically according to Pðrðt þ

1ÞlsðtÞ; aðtÞÞ:
Given the earlier setup, the goal of reinforcement

learning is to find an optimal policy that maximizes the

expected sum of future rewards. A commonly used

architecture for reinforcement learning is the actor–critic

(Barto, 1995a; Barto, Sutton, & Anderson, 1983) (Fig. 2),

which consists of two parts: (1) the critic, which learns to

predict future rewards in the form of a state value function

VðsÞ for the current policy, and (2) the actor, which

improves the policy PðalsÞ in reference to the future reward

predicted by the critic. The actor and the critic learn either

alternately or concurrently. For theoretical details of such

learning algorithms, please refer to Singh, Jaakkola,

Littman, and Szpesvari (2000).

2.1. State value function and TD error

The critic learns the state value function, which is

defined as the cumulative future reward expected by

following the current policy PðalsÞ from the state sðtÞ;
i.e.

VðsðtÞÞ ¼ E½rðt þ 1Þ þ grðt þ 2Þ þ g2rðt þ 3Þ þ · · ·�: ð1Þ

Here, the parameter g (0 # g # 1) is the discount

factor, which assigns less weight on the reward

expected in the far future. Fig. 3 shows an example

of state value function for a simple deterministic policy

in a three-step decision task. The value function can

guide the agent’s behavior by signaling how good or

bad state the agent is in based on the prediction of

future reward.

The value functions for adjacent states should satisfy the

consistency condition

Vðsðt 2 1Þ ¼ E½rðtÞ þ grðt þ 1Þ þ g2rðt þ 2Þ þ · · ·�

¼ E½rðtÞ þ gVðsðtÞÞ�: ð2Þ

Thus any deviation from this consistency condition,

expressed as

dðtÞ ¼ rðtÞ þ gVðsðtÞÞ2 Vðsðt 2 1ÞÞ; ð3Þ

should be zero on average. This signal, called the temporal

difference (TD) error, is used as the error signal for learning

the value function. The standard way is to correct the older

estimate of value function Vðsðt 2 1ÞÞ in proportion to the

Fig. 2. A standard architecture for reinforcement learning, known as actor–

critic. The agent has a two-part organization: the critic learns the state value

function VðsÞ and the actor learns the policy PðalsÞ: The TD error dðtÞ is

used as the error signal for the learning of the critic and the reinforcement

signal is used for the learning of the actor.

Fig. 3. Illustration of the state value function for a simple policy in a three-

step decision task. The open circles represent the states ðs1;…; s10Þ; the

arrows the actions (a1: going up; a2 going down), the figure by the arrow the

rewards r ¼ Rðs; aÞ: The figures in the circles show the value function with

the discount factor g ¼ 0:8 for a deterministic policy of always taking the

action a2. The graphs below show the time courses of reward rðtÞ and the

state value function VðsðtÞÞ ¼ rðt þ 1Þ þ grðt þ 2Þ þ · · · ¼ rðt þ 1Þ þ

gVðsðt þ 1ÞÞ: For example, at the initial state s1, the action value functions

are Qðs1; a1Þ ¼ Rðs1; a1Þ þ gVðs2Þ ¼ 1 þ 0:8 £ ð21:8Þ ¼ 20:44 and

Qðs1; a2Þ ¼ Rðs1; a2Þ þ gVðs3Þ ¼ 21 þ 0:8 £ 3 ¼ 1:4: Thus in reference

to the future reward prediction by the value function, the agent can choose

to take a2, although its immediate reward is negative.
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TD error dðtÞ :

DVðsðt 2 1ÞÞ / dðtÞ: ð4Þ

2.2. Action value function and policy

Although the learning of the critic brings the TD

error (3) close to zero, when the policy is stochastic, it

fluctuates around zero according to the particular choice

of the preceding actions. It can be seen from Eq. (3)

that a positive TD error dðtÞ . 0 means that the agent

acquired more reward rðtÞ than expected, or reached a

state sðtÞ with a higher value VðsðtÞÞ than expected. Thus

the agent should increase the probability of taking the

same action when it comes to the same state again, that

is, to increase the probability Pðaðt 2 1Þlsðt 2 1ÞÞ: The

opposite holds for a negative TD error dðtÞ , 0: Thus

the TD error dðtÞ does not only serve as the error signal

for the critic to learn the state value function VðsÞ; but

also serves as the reinforcement signal for the actor to

update the policy PðalsÞ:
A common way of defining the policy is via the

action value function Qðs; aÞ; which represents how

much future rewards the agent would get by taking an

action a at state s. For a given state s, the action values

Qðs; aiÞ for the candidate actions ai ði ¼ 1;…;mÞ are

compared and the one with a higher action value

Qðs; aiÞ is selected with a higher probability. A typical

way is so-called Boltzmann selection, in which the

policy is given by

PðailsÞ ¼
exp½bQðs; aiÞ�

Xm

j¼1

exp½bQðs; ajÞ�

: ð5Þ

Here, the parameter b, which is called the inverse

temperature, controls the stochasticity of the policy.

With b ¼ 0; action selection is totally random, i.e.

PðailsÞ ¼ 1=m: As b is increased, action selection

becomes less random, and the probability of selecting

the action with the highest action value becomes close

to one. In the limit of b!1; Eq. (5) becomes a

deterministic, winner-take-all rule:

aðtÞ ¼ arg max
a

QðsðtÞ; aÞ: ð6Þ

The action value function is defined as

QðsðtÞ; aÞ ¼ E½rðt þ 1Þ þ gVðsðt þ 1ÞÞlaðtÞ ¼ a�; ð7Þ

where the immediate reward rðt þ 1Þ and the state sðt þ

1Þ depend on the particular choice of action a at state

sðtÞ: After an action aðt 2 1Þ is taken at a state sðt 2 1Þ

and the TD error dðtÞ is calculated from the resulting

reward rðtÞ and state sðtÞ; the action value function for

the state-action pair is updated by

DQðsðt 2 1Þ; aðt 2 1ÞÞ / dðtÞ; ð8Þ

2.3. Global learning signal and metaparameters

In implementing the earlier reinforcement learning

algorithm, the value functions VðsÞ and Qðs; aÞ are often

represented using a weighted sum of basis functions, such as

VðsÞ ¼
X

j

vjbjðsÞ ð9Þ

and

Qðs; aÞ ¼
X

k

wkckðs; aÞ: ð10Þ

Here, bj(s ) ðj ¼ 1;…;NÞ and ck(s, a ) ðk ¼ 1;…;MÞ are the

basis functions, i.e. internal representation of states and

actions of the agent, and vj and wk are the weight parameters.

In order to update the value functions according to Eqs. (4)

and (8), the weight parameters are updated as

Dvj ¼ adðtÞbjðsðt 2 1ÞÞ ð11Þ

and

Dwk ¼ adðtÞckðsðt 2 1Þ; aðt 2 1ÞÞ; ð12Þ

where a is the learning rate for controlling how quickly the

old memory is updated by experience. In this learning

algorithm, the TD error dðtÞ works as the global learning

signal for updating the parameters vj and wk.

The way in which parameters like vj and wk change over

time is also dependent on a number of global parameters,

such as the learning rate a, the inverse temperature b, and

the discount factor g. These are called metaparameters or

hyperparameters, since they are higher-level parameters that

regulate the way a large number of ordinary parameters like

vj and wk change by learning. In order to realize efficient

learning, the setting of those metaparameters should match

the characteristics of the environment and the task for the

agent. In the following, we propose a set of hypotheses

stating that distinct neuromodulators are used for signaling

these global learning signal and metaparameters.

3. Hypothetical roles of neuromodulators

Now we restate our hypotheses on the roles of

neuromodulators in terms of the global learning signal and

metaparameters introduced in the above reinforcement

learning algorithm (Doya, 2000b):

1. Dopamine signals the TD error d.

2. Serotonin controls the discount factor g.

3. Noradrenaline controls the inverse temperature b.

4. Acetylcholine controls the learning rate a.

K. Doya / Neural Networks 15 (2002) 495–506498



Below, we review the experimental findings and

theoretical models that support these hypotheses.

3.1. Dopamine and reward prediction

As described in Section 2.3, the TD error d is the

essential learning signal for reward prediction and action

selection. The midbrain dopaminergic system seems to be

critically involved in both functions.

Schultz and colleagues (Schultz, 1998; Schultz, Apicella,

& Ljungberg, 1993; Schultz, Dayan, & Montague, 1997)

performed a series of experiments on the response of

dopaminergic neurons in the substantia nigra pars compacta

(SNc) and the ventral tegmental area (VTA). They trained

monkeys to press a lever after a light was turned on.

Dopamine neurons responded to liquid reward early in

learning, or when reward was given unexpectedly outside

the task (Fig. 4(a)). After monkeys learned the task well,

dopamine neurons responded to the cue light and did not

respond to the reward itself (Fig. 4(b)). If the reward was

omitted, dopamine neuron activity was depressed (Fig.

4(c)). Such changes in response closely resemble the

behavior of the TD error dðtÞ in the course of reward

prediction learning (Houk et al., 1995; Montague et al.,

1996; Suri, 2002) (Fig. 4).

In addition to the reward predictive response, dopamine

is also known to be involved in action learning. Electric

stimulation of the dopaminergic system has the effect of

reinforcement, i.e. the animal learns to repeat the action that

preceded the stimulus. Furthermore, most addictive drugs

have the effect of increasing the release or blocking the

reuptake of dopamine (Wise, 1996).

At the cellular level, dopamine modulates the synaptic

plasticity of cortical input to the striatum. In an ordinary

Hebbian plasticity model, a synapse is potentiated after

frequent stimulation that leads to response of the post-

synaptic neuron. In the striatal neuron, however, the

direction of plasticity is reversed with the level of dopamine

(Reynolds & Wickens, 2001, 2002; Wickens, Beggs, &

Arbuthnott, 1996). Thus, if the change in firing of dopamine

neurons from the baseline encodes the TD error dðtÞ and

the cortical input represents the basis functions bj(s ) and

ck(s, a ), the synaptic learning rules (11) and (12) can be

implemented with this dopamine-dependent plasticity.

These observations strongly suggest that dopamine

activity represents the TD error, which is used for learning

of reward prediction and action selection.

3.1.1. Reinforcement learning model of the basal ganglia

It has been hypothesized that the neural circuit of the

basal ganglia plays a major role in reinforcement learning

(Houk et al., 1995; Montague et al., 1996; Schultz et al.,

1997). Fig. 5 shows hypothetical functions of the com-

ponents of the basal ganglia circuit (Doya, 2000a). The

striatum, the input part of the basal ganglia, learns the state

value functions VðaÞ and the policy PðalsÞ; possibly in the

form of action value functions Qðs; aÞ: The midbrain

dopaminergic neuron represents the TD error d, which is

fed back to the striatum for the learning of the value

functions thorough dopamine dependent plasticity of the

cortico-striatal synapses.

More specifically, the cerebral cortex provides internal

representation of the environmental states. Neurons in one

of the two compartments of the striatum, the patch or

striosome, represent the state value function VðsÞ: Their

output is sent to the dopaminergic neurons in the compact

Fig. 4. Interpretation of the responses of midbrain dopamine neurons in the

TD model, which assumes that the change in DA neuron firing relative to its

baseline represents the TD error dðtÞ ¼ rðtÞ þ gVðtÞ2 Vðt 2 1Þ: (a) Before

learning, no reward is predicted, i.e. VðtÞ ; 0: Thus the TD error dðtÞ is the

same as the reward itself, rðtÞ: (b) After learning is complete, the predicted

future reward VðtÞ builds up immediately after the cue signal, causing the

discounted temporal derivative gVðtÞ2 Vðt 2 1Þ to provide a positive pulse

in the TD error even if there is no reward rðtÞ: At the time of reward

delivery, as there will be no more reward for the time being, VðtÞ drops to

zero and the negative temporal derivative of VðtÞ cancels out the positive

reward signal rðtÞ: (c) If the promised reward is omitted, there is a negative

response due to the drop in the predicted reward VðtÞ:

Fig. 5. Schematic diagram and hypothetical functions of the circuit of the

basal ganglia. SNc and SNr: compact and reticular parts of substantia nigra.

GP: globus pallidus.
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part of SNc to compute the TD error d. Different groups of

neurons in the other compartment, the matrix, represent the

action value functions Qðs; aiÞ for different actions. Their

outputs are sent to the reticular part of the substantia nigra

(SNr) and the globus pallidus (GP), where competitive

dynamics realize a Q-value-dependent action selection

mechanism, such as Eqs. (5) or (6).

One of the major criticisms of this dopamine TD

hypothesis is that the dopamine neurons respond to salient,

non-rewarding stimuli (Horvitz, 2000; Redgrave, Prescott,

& Gurney, 1999). Some of these responses can be explained

by considering optimistic biases for promoting exploration,

generalization in responses, and prediction using internal

models (Kakade & Dayan, 2002; Suri, 2002).

Another critical issue in the reinforcement learning

model of the basal ganglia is how to compute the ‘temporal

difference’ of the value function VðsÞ; represented in the

striatal output (Joel, Niv, & Ruppin, 2002). It has been

proposed that the direct inhibitory connection from the

striatum to SNc has long latency, providing Vðsðt 2 1ÞÞ;
while the indirect double-inhibitory connection has a shorter

latency, thus providing VðsðtÞÞ (Fig. 6(a)) (Houk et al.,

1995). Although slow GABAB receptors are known to exist

in the direct inhibitory connection (Tepper, Martin, &

Anderson, 1995), recent data suggest that both direct and

indirect inputs are predominantly mediated by fast GABAA

receptors (Paladini, Celada, & Tepper, 1999).

A different mechanism for TD computation is possible if

we consider an alternative form of the TD error (Doya,

2000c):

dðtÞ ¼ rðtÞ2 ð1 2 gÞVðsðtÞÞ þ ðVðsðtÞ2 Vðsðt 2 1ÞÞÞ; ð13Þ

which is the sum of the reward, immediate inhibition, and

TD of the value functions (Fig. 6(b)). This can be

implemented if there is a delay mechanism in the indirect

pathway, for example, within the recurrent circuit between

GPe and STN. Other mechanisms have also been proposed

(Brown, Bullock, & Grossberg, 1999; Joel et al., 2002) and

further studies are necessary to clarify the neural circuit for

computation of TD.

3.1.2. Dopaminergic modulation in the cerebral cortex

Although the striatum (including its ventral part, the

nucleus accumbens) receives the strongest dopaminergic

input in the forebrain, the cerebral cortex, especially the

prefrontal cortex, receive dopaminergic projections from

VTA. A possible role of dopamine in the cerebral cortex is

to guide the acquisition of task-dependent internal repre-

sentation of states and actions, which facilitate reward

prediction and action selection in the basal ganglia.

In computation of value functions, as in Eqs. (9) and (10),

the selection of the basis functions bi(s ) and ck(s, a )

critically affects the performance of learning. It has been

shown that learning of task-dependent basis functions is

possible in a biologically plausible way (without resorting to

error backpropagation) using a global reward signal

(Gullapalli, 1990; Mazzoni et al., 1991).

When the state of the environment is not perfectly

observable (situation called partially-observable Markov

decision problem, POMDP), the agent has to predict and

update the invisible state of the environment in a form of

working memory. An important problem is what to store in

the working memory, since keeping track of all the invisible

states of the environment is too demanding and wasteful.

The neurons in the prefrontal cortex show sustained activity

during working memory tasks. It has been shown that their

responses are dependent on the amount and type of the

reward associated with the memorized items (Tremblay &

Schultz, 2000; Watanabe, 1996). It has also been shown that

stable working memory requires activation of dopamine D1

receptor (Durstewitz & Seamans, 2002; Sawaguchi &

Goldman-Rakic, 1994). Dopaminergic control of prefrontal

working memory would be helpful for selective use of

memory capacity for the sensory cues that are relevant for

getting the reward.

3.2. Serotonin and time scale of reward prediction

The discount factor g in the definition of the value

function (1) determines how far into the future the agent

should consider in reward prediction and action selection.

The setting of the discount factor is particularly important

when there is a conflict between the immediate and long-

term outcomes (Fig. 7). In real life, it is often the case that

one would have to pay some immediate cost (negative

reward) in order to achieve a larger future reward, e.g. long

travels in foraging or daily cultivation for harvest. It is also

the case that one should avoid positive immediate reward if

it is associated with a big negative reward in the future.

Although the discount factor g has to be set large enough

to achieve good behaviors over the long run, the closer g

approaches one, the more difficult it is to reliably predict the

corresponding future reward (Baxter & Bartlett, 2000;

Fig. 6. Possible mechanisms for TD computation of the value function

represented in the basal ganglia. The circles W represent excitatory

connection while black dots † represents inhibitory connections. A large

gray circle represents a source of possible time delay. SNc and SNr:

compact and reticular parts of substantia nigra. Str: striatum. GPi and GPe:

internal and external segments of globus pallidus. STN: subthalamic

nucleus.
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Littman, Cassandra, & Kaelbling, 1995). Furthermore, in

many real-world tasks, rewards have to be acquired not too

far in the future; an animal has to find food before it starves

and has to find a mate before the reproductive season comes

to an end. Thus, an appropriate value of the discount factor

has to be chosen to match the demand of the task and the

knowledge of the agent.

The serotonergic system has often been recognized as an

opponent of the dopaminergic system (Daw, Kakade, &

Dayan, 2002; Deakin & Graeff, 1991; Fletcher, 1995).

However, the interactions between serotonin and dopamine

appear to be more complex than those of simple opponents.

Serotonin and dopamine in some cases work in a mutually

facilitatory manner. For example, serotonin facilitates

release of dopamine in the striatum (Sershen, Hashim, &

Lajtha, 2000). Although genetic knockout of serotonin 1B

receptor facilitates cocaine reinforcement (Rocha et al.,

1998b; White, 1998), stimulation of serotonin 1B receptor

enhances cocaine reinforcement (Parsons, Weiss, & Koob,

1998). While genetic knockout of dopamine transporter

does not block cocaine reinforcement (Rocha et al., 1998a),

knockout of both dopamine and serotonin transporters

blocks cocaine reinforcement (Sora et al., 2001). It has been

shown that not only the dopamine D1 receptor (Durstewitz

& Seamans, 2002; Sawaguchi & Goldman-Rakic, 1994) but

also the serotonin 2A receptor facilitate working memory in

the prefrontal cortex (Williams, Rao, & Goldman-Rakic,

2002).

Such complex, context-dependent functions of serotonin

may be better understood by assuming that serotonin

controls the balance between short- and long-term conse-

quence of actions by regulating the discount factor g in

reinforcement learning (Doya, 2000b).

In this hypothesis, a higher level of serotonin means a

higher setting of the discount factor g, which demands

prediction of reward longer in the future. A low level of

serotonin is often associated with impulsive behaviors, such

as aggression (Buhot, 1997; Rahman, Sahakian, Cardinal,

Rogers, & Robbins, 2001; Robbins, 2000). In experimental

rats, depletion of the central serotonergic system resulted in

impulsive choice of small immediate reward as opposed to

larger, delayed reward (Mobini, Chang, Ho, Bradshaw, &

Szabadi, 2000). Selective serotonin reuptake inhibitors

(SSRI) and other serotonin enhancing drugs are also

known to be effective for unipolar depression and bipolar

disorders, although its therapeutical mechanism is still not

fully understood (Wang & Licinio, 2001). The situation

shown in Fig. 7(b), where the optimal policy is doing

nothing with a small setting of the discount factor g, can be a

model of depression.

3.2.1. Possible mechanisms of the control of time scale

How can the discount factor g be controlled in the above

reinforcement learning model of the basal ganglia? In both

Fig. 6(a) and (b), the relative balance of the direct and

indirect pathways affects the discount factor; the contri-

bution of the indirect pathway should be increased for larger

g. Thus if serotonin changes the balance of the effective

strengths of the direct and indirect pathways, it could also

change the effective discount factor. Both the striatum and

the dopaminergic nuclei (SNc and VTA) receive seroton-

ergic input from the dorsal raphe nucleus. An experiment

comparing the serotonergic effects on the strengths of the

direct and indirect pathways would clarify whether such a

mechanism exists.

Another possible way of regulating the time scale of

reward prediction is to activate or deactivate multiple

reward prediction pathways. The cortico-basal ganglia

circuit has a parallel loop organization, including cognitive

and motor loops (Middleton & Strick, 2000). In addition to

the basal ganglia, the amygdala is also involved in

reinforcement learning. Furthermore, the cerebellum

seems to provide internal models of the environmental

dynamics (Kawato, 1999), which can be helpful in long-

term prediction of the future events and rewards (Doya,

1999). It is possible that these different pathways are

specialized for reward prediction and action selection in

different time scales (Cardinal, Pennicott, Sugathapala,

Robbins, & Everitt, 2001). If serotonin differentially

enhances or suppresses the activities of these parallel

Fig. 7. The effect of discount factor g in decision making. The gray lines

show the weight gt for discounting. In a scenario where negative reward

(cost) is expected before achieving a large positive reward, the cumulative

future reward V becomes negative if g is small (a) and positive if g is large

enough (b). Assuming that there is a baseline behavior where the expected

reward is zero, such behavior is rejected as negligible with a small g.
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pathways, by using different receptors, transporters, and

intracellular mechanisms (De Deurwaerde, Stinus, &

Sampinato, 1998), it is possible for the serotonin to control

the effective time scale of reward prediction.

3.3. Noradrenaline and randomness of action selection

While wide exploration by stochastic action selection

facilitates learning of new behaviors, deterministic action

selection such as Eq. (6) is favored in making the best use of

what has already been learned. Thus, the randomness in

action selection should be actively tuned in reference to the

progress of learning and the urgency of the situation. This is

known as the exploration-exploitation problem.

Fig. 8 shows how the different settings of the inverse

temperature b affect the action selection probability defined

by Eq. (5) for the case of two action choices. In this case, the

probability of selecting one action is a sigmoid function of

the difference in the Q-values for the two actions. The

sigmoid curve becomes steeper with a larger value of b.

Noradrenaline has been known to be involved in the

control of arousal and relaxation. The noradrenergic

neurons in the locus coeruleus (LC) are activated in

urgent situations (e.g. with aversive stimuli). More

specifically, it was shown in an attention task of

monkeys that the LC neuron activity is closely correlated

with the accuracy of action selection; phasic response at

the time of stimulus presentation is associated with a

high accuracy of response (Aston-Jones, Rajkowski,

Kubiak, & Alexinsky, 1994). Such a change in the

accuracy of response has been replicated in models in

which noradrenaline sharpens the response tuning of

neurons by increasing the input–output gain (Gilzenrat,

Holmes, Rajkowski, Aston-Jones, & Cohen, 2002;

Servan-Schreiber, Printz, & Cohen, 1990; Usher,

Cohen, Servan-Schreiber, Rajkowski, & Aston-Jones,

1999; Usher & Davelaar, 2002).

These facts and models suggest that noradrenaline

provides a means for dealing with the exploration-exploita-

tion problem (Usher et al., 1999); a higher level of

noradrenaline corresponds to a higher setting of the inverse

temperature b, which results in reliable selection of the

action with the largest predicted future reward. Interest-

ingly, the use of amphetamine, which increase the level of

noradrenaline by blocking its reuptake, results in stereo-

typed behaviors.

A basic question in the above hypothesis is how a

stochastic choice is realized in the brain. Any neuron is

subject to statistical opening and closing of ionic channels,

but such small randomness could be quickly averaged away

if the neuron operates in a stable attractor state. A possible

mechanism for amplification of noise is chaotic or near-

chaotic dynamics of the neuron and the circuit.

A marked feature of the neurons in GP is their high level

of spontaneous firing. The inhibitory interactions of neurons

with high spontaneous activity may realize an asynchro-

nous, chaotic dynamic that serves as the roulette wheel for

stochastic action selection. If the circuit in GP implements

stochastic action selection (Fig. 5), the above hypothesis

predicts that the randomness in action selection is subject to

control by noradrenergic system. There is evidence showing

that GP has a relatively high level of noradrenaline in the

basal ganglia (Russell, Allin, Lamm, & Taljaard, 1992).

Analysis of the changes in the randomness of GP neural

firing is necessary for testing such a possibility.

3.4. Acetylcholine and memory update

It is obvious that learning becomes slow if the learning

rate a is set too small. However, if it is set very large, what

has already been learned could be quickly overwritten.

Furthermore, if the learning rate is set too large, the learning

process becomes unstable. For quick and accurate learning,

the learning rate should be initially set large but gradually

decreased. In a linear function approximator, modulation of

learning rate in inverse proportion to the training time is

often used. More adaptive methods for setting of learning

rates have also been proposed (Murata, Kawanabe, Zienhe,

Muller, & Amari, 2002; Sutton, 1992).

Acetylcholine appears to control the balance between the

storage and update of memory at the both cellular and

circuit levels (Hasselmo & Bower, 1993). Acetylcholine is

known to modulate the synaptic plasticity in the hippo-

campus, the cerebral cortex, and the striatum (Partridge,

Appasundaram, Gerhardt, Ronesi, & Lovinger, 2002;

Rasmusson, 2000). Loss of cholinergic neurons in the

Meynert nucleus is associated with memory disorders like

Alzheimer’s disease (Perry, Walker, Grance, & Perry,

1999).

In the above learning schemes (9) and (10), leaning is

Fig. 8. The effect of inverse temperature b in action selection. Suppose

there are two possible actions a1 and a2 at state s. The probability of taking

action a1 is plotted for the difference in the corresponding action value

function Qðs; a1Þ2 Qðs; a2Þ with different values of inverse temperature

b ¼ 0:1; 1, and 10. Smaller b leads to more random action selection. Larger

b leads to nearly deterministic selection of the action with the largest Q-

value.
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achieved both by the plasticity of the output weights vj and

wk, and the choice of the basis functions bj(s ) and ckðs; aÞ:
The cholinergic neurons in the striatum, which shows a

response timed to potentially rewarding sensory cues

(Aosaki, Tsubukawa, Watanabe, Graybiel, & Kimura,

1994; Shimo & Hikosaka, 2001), may control the

dopamine-dependent plasticity of cortico-striatal synapses

(Partridge et al., 2002).

The cholinergic system may also modulate the infor-

mation coding in the cortex and the hippocampus so that

their response properties are not simply determined by the

statistics of the sensory input but are also dependent on the

importance of the sensory inputs. Hasselmo and colleagues

proposed the role of acetylcholine in controlling the modes

of operation in the hippocampus and the cortex: memory

storage with a high level of cholinergic input and memory

retrieval with a low level of cholinergic input (Hasselmo &

Bower, 1993; Hasselmo & Schnell, 1994). Computational

models have been proposed in which the cholinergic system

controls the top-down and bottom up information flow

based on the mismatch between the top-down prediction and

bottom-up sensory inputs (Dayan & Yu, 2002; Hasselmo &

Schnell, 1994; Yu & Dayan, 2002). Such control mechan-

isms of information flow would be helpful in action-based

construction of internal representation of the environment,

e.g. in our model the basis functions bj(s ) and ckðs; aÞ:

4. Dynamic interactions of neuromodulators

Based on the above hypotheses on the specific roles of

neuromodulators in reinforcement learning, it is possible to

theoretically predict how the activities of those modulators

should depend on each other. Fig. 9 shows the possible

interactions between the neuromodulators, the experience of

the agent represented in the form of value functions, and the

environment.

4.1. Dopamine as TD error

According to the definition of the TD error (3), the

activity of dopamine dðtÞ should depend on the value

function VðsÞ and the level of serotonin g. Specifically,

serotonin should have a facilitatory effect on dopamine

when the predicted future reward VðsðtÞÞ is positive, and an

inhibitory effect when VðsðtÞÞ is negative (Fig. 9(a)).

A different form of TD error is derived for average

reward reward reinforcement learning (Mahadevan, 1996)

by replacing the normalized value ð1 2 gÞVðsðtÞÞ in the

discounted TD error (13) by the average reward �r

dðtÞ ¼ rðtÞ2 �r þ VðsðtÞÞ2 Vðsðt 2 1ÞÞ: ð14Þ

Based on this framework, Daw and colleagues proposed an

alternate hypothesis that serotonin represents the predicted

average reward �r; thus having an inhibitory effect on

dopamine (Daw et al., 2002). A critical experiment to

clarify which of these hypotheses are more appropriate is to

compare the effects of serotonin on the activity of dopamine

under different task conditions where predicted future

reward VðsÞ is either positive or negative.

4.2. Serotonin as discount factor

In general, learning to predict rewards in the far future is

Fig. 9. Possible interactions between the neuromodulators representing the global learning signal and metaparameters, agent’s experience in the form of value

functions, and the state, action, and reward of the environment. See text for the particular ways of interactions shown by the arrows a through g.
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more difficult than to predict rewards in the near future. It

has been shown that the value function learned with a large

g tends to have a large variance, and thus learning with a

smaller g can result in biased, but less variable estimate of

future rewards (Baxter & Bartlett, 2000; Kakade, 2001;

Littman et al., 1995). Since the high variability in the reward

prediction is likely to be reflected in the variance of the TD

error, it would possible to regulate the discount factor based

on the variance in the TD error. Such a heuristic regulatory

algorithm predicts that a high variability in the dopamin-

ergic activity should have an inhibitory effect on the

serotonergic system (Fig. 9(b)).

Moreover, in order to learn the long-term consequence of

behaviors, the agent should not fix its behavior too quickly.

Thus when the discount factor g is large, both the inverse

temperature g and the learning rate a should be kept small.

This predicts inhibitory effects of serotonin onto noradrena-

line (Fig. 9(d)) and acetylcholine (Fig. 9(d)).

4.3. Noradrenaline as inverse temperature

In general, an agent has to resort to extensive, random

search when it has little knowledge about the environment

and should gradually focus its search as it acquires more

knowledge about the environment. A typical method is to

take an increasing schedule of the inverse temperature b,

known as annealing.

A more adaptive way is to control the randomness in

action selection depending on the performance of the agent.

When the performance of an agent is close to its best

desired, a better performance is given by reducing the

randomness in action selection (Doya, 2000c; Gullapalli,

1990). On the other hand, when an agent is in a dangerous

situation, it would not have a leisure of doing random search

and should select the best possible action. Since the

performance level is reflected in the level of state value

function, the level of noradrenaline, representing the inverse

temperature, should increase when the state value function

is very high or very low (Fig. 9(e)).

In order to keep variability of actions at different states,

Ishii and colleagues proposed a method of state-dependent

control of the inverse temperature (Ishii, Yoshida, &

Yoshimoto, 2002). Their model predicts that the inverse

temperature encoded by noradrenaline is reduced when the

action value function Qðs; aÞ has a high variance for a given

state (Fig. 9(f)).

4.4. Acetylcholine as learning rate

A number of methods for automatically tuning the

learning rate parameter have been proposed (Murata et al.,

2002; Sutton, 1992). One of those, known as the delta-bar-

delta method, detects oscillations in the error signal, which

means that the setting of the learning rate is too large.

According to such a regulatory mechanism, frequent change

in the direction of the TD error encoded as the dopaminergic

activity would have an inhibitory effect on the learning rate

represented by the cholinergic system (Fig. 9(g)).

5. Conclusion

This paper proposed a unified theory on the roles of

neuromodulators in mediating the global learning signal and

metaparameters of distributed learning mechanisms of the

brain. We considered how such regulatory mechanisms can

be implemented in the neural circuit centered around the

basal ganglia. However, there are many other brain areas

and functions that require further consideration, for

example, the roles of the amygdala and hippocampus in

reinforcement learning and the roles of neuromodulators in

sensory processing. As we discussed in reference to the role

of serotonin, the same global signal should have different

effects on different neurons and circuits, depending on their

particular functions. This may be one of the reasons for the

variety of receptors and intracellular signaling mechanisms

of neuromodulators (Marder & Thirumalai, 2002).

The proposed hypotheses enabled us to make specific

predictions about the effects of the changes in a particular

neuromodulatory system on the behavior of the animal, the

dynamics of neural circuits, and the activity of other

neuromodulators. The hypotheses also lead us to specific

predictions as to how those neuromodulatory systems

should respond to changes in the environment and the

process of learning of the animal. Experimental tests of

these predictions may force us to revise this simple theory,

but it can nevertheless be helpful in delineating the complex

functions of neuromodulators.

The neuromodulatory systems are regarded as biophysi-

cal substrates of motivation, emotional states, and per-

sonalities. The computational models of the roles of

neuromodulators, as proposed in this and other papers in

this special issue, could provide the theoretical basis for

better understanding the mechanism of emotion, the

appropriate therapy for psychiatric and behavioral diseases,

and the design of more ‘human-like’ artificial agents.
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